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High order essentially non-oscillatory (ENO) schemes, originally
designed for compressible flow and in general for hyperbolic conserva-
tion laws, are applied to incompressible Euler and Navier-Stokes
equations with periodic boundary conditions. The projection to
divergence-free velocity fields is achieved by fourth-order central
differences through fast Fourier transforms (FFT) and a mild high-order
filtering. The objective of this work is to assess the resolution of ENO
schemes for large scale features of the flow when a coarse grid is used
and small scale features of the flow, such as shears and roll-ups, are not
fully resolved. It is found that high-order ENOC schemes remain stable
under such situations and quantities related to large scale features, such
as the total circulation around the roli-up region, are adequately
resglved. & 1994 Academic Press, Inc.

L. INTRODUCTION

In this paper we consider numerically solving the
incompressible Navier-Stokes or Euler equations

U+ Ui + UM_‘. = iu(u.\'.r + uy_r) — P

v,+u oo, =plv, +v,.)—p, (1L.1)
u,+v,=0
or their equivalent conservative form
(1) o (v}, = it o+ 14,) = P
v+ (o), + (07), = plog +v,,) — b, (1.2)

u +v,=0,
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where (, v) is the velocity vector, p is the pressure, u > 0 for
the Navier-Stokes equations, and u=0 for the Euler
equations. The numerical methods we use are the high-
order essentially non-osciliatory (ENO) schemes, originally
designed for compressible flow and in general for hyperbolic
conservation laws [8, [2]. The equation is defined on the
box [0, 2n] = [0, 2n] with periodic boundary conditions in
both directions. We choose two space dimensions for easy
presentation, although our method is also applicable for
three space dimensions.

In some sense Eqs. (1.1) are easier to solve numerically
than their compréssible counterparts because the latter have
solutions containing possible discontinuities (for example,
shocks and contact discontinuities). However, the solution
to (1.1), even if for most cases it is smooth mathematically,
may evolve rather rapidly with time ¢ and may easily
become too complicated to be fuliy resolved on a feasible
grid. Traditional linearly stable schemes, such as spectral
methods and high-order central difference methods, are
suitable for the cases where the solution can be fully
resolved, but they typically produce signs of instability such
as oscillations when small scale features of the flow, such as
shears and roll-ups, cannot be adequately resolved on the
computational grid (see, for example, the last contour in
Fig. 1). Although in principle one can always overcome this
difficulty by refining the grid, today’s computer capacity
seriously restricts the largest possible grid size.

In the last few years there is a lot of activity in designing
high-order, nonlinearly stable “shock capturing” schemes
for compressible flow and in general for hyperbolic conser-
vation laws. See, for example, (2, 7, 8, 127, and the referen-
ces listed therein. The philosophy of such schemes is to give
up fully resolving rapid transition regions or shocks, just to
“capture” them in a stable and somehow globally correct
fashion (e.g., with correct shock speed), but at the same time
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FIG. 1.

to require a high resolution for the smooth part of the flow.
The success of such an approach for the compressible flow
is documented by many examples in the literature. One
example is the one- and two-dimensional shock interaction
with vorticity or entropy waves [12,13]. The shock is
captured sharply and certain key quantities related to the
interaction between the shock and the smooth part of the
flow, such as the amplification and generation factors when
a wave passes through a shock, are well resolved. Another
example is the homogencous turbulence for compressible
Navier—Stokes equations studied in [13 7. In one of the test
cases, the spectral method can resolve all the scales using
a 2562 grid, while third-order ENO with just 64 points
can adequately resolve certain interesting quantities such
as the average fluctuation Mach number and maximum
divergence, although it cannot resolve local quantities
achieved inside the rapid transition region such as the mini-
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The vorticity contour for Example 2 at r=4, 6, 8, 10. Spectral method with 5122 points.

mum divergence, The conclusion seems to be that, when
fully resolving the flow is either impossible or too costly, a
“capturing” scheme such as ENO can be used on a coarse
grid to obtain at least some partial information about the
flow.

In this paper we perform a similar numerical study for the
incompressible equation (1.1), to see what one can obtain
by using the high-order ENO schemes on a coarse grid,
without fully resolving the flow. We choose doubly periodic
shear layers, used in [ 1], as our test case. A spectral method
with 5122 points is able to fully resolve the flow up to t = 8§,
but begins to show signs of underresolution (wriggles in
vorticity) thereafter. This indicates the tremendous require-
ment upon computation resources if one tries to resolve
everything in the flow. We then use the third-order ENO
method (which is fourth order in the L, sense) and coarse
grids (647 and 128° points), to assess its resoiution, We find
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that the scheme remains stable for coarse meshes and cer-
tain quantities related to the smooth part of the flow, such
as the total circulation around the roll-up, are adequately
resolved by ENO methods. We also show the stable result
of ENO methods for discontinuous initial data.

A pioneer work in applying shock capturing compressible
flow techniques to incompressible flow is by Bell, Coiella,
and Giaz [1], in which they considered a second-order
Godunov type discretization, investigated the projection
into divergence-free velocity fields for general boundary
conditions and discussed accuracy of time discretizations.
Since our objective in this paper is o assess the resolution
of the ENO method for (1.1}, we choose a periodic bound-
ary condition to simplify the projection. General boundary
conditions would have to be handled either by more com-
plicated projection [1] or by artificial compressibility
methods [4]. We are currently investigating ENO schemes
for such cases.

2. THE ENO METHOD

We solve (1.2) in its equivalent projection form

(9[-0 0]

where P is the Hodge projection into divergence-free fields,
ie, if (§)=P(}), then &, +3,=0 and 0, &, =0v,~u,.
See, e.g., [1]. For the current periodic case the additional
condition to obtain a unique projection P is that the mean
values of « and ¢ are preserved, ie, {37 {37 a(x, y) dxdy=

o 5T ulx, yydx dy and {37 {7 8(x, y) dx dy =[5 {37 v(x, )
dx dy.

We use ¥, and &, (even numbers) equally spaced grid
points in x and p, respectively. The grid sizes are denoted by
Ax=N_/2r and dy= N /2r, and the grid points are
denoted by x;=idx and y,=jAy. The approximated
numerical values of « and v at the grid point {x,, y,} are
denoted by ¥, and v;.

We first describe the numerical implementation of the
projection P. In the pericdic case this is easily achieved in
the Fourier space. We first expand « and v using Fourier
collocation:

) N2
uy(x, y)= Z Z ﬁkzeﬂh”v]s
= N2 k=N
f= ~ Nyf2 Nes2 (2.2)
w2 N2

U,v(x, y)= Z z [(k,\-+1'_,.),

I= —Nyj2 k= —Ng2

b€

where /=
ficients which can be computed from the point vaiues u,; and
vy, using either FFT or matrix-vector multiplications. The
detail can be found in, ¢.g., [3]. Derivatives, either by spec-

— 1, ti;and §,, are the Fourier collocation coel-

tral method or by central differences, involve only multi-
plications by factors d3 or d7 in (2.2) because e**+* are
eigenfunctions of such derivative operators. For example,

di= Ik, di=1 (2.3)
for spectral derivatives;
4
di=2Isin (k-——z x)/z]x,
(24)

14
d}=2fsin (Ty)/dy

for the second-order central differences which, when used
twice, will produce the second-order central difference
approximation (w,, , — 2w, +w,_ }/Ax* for w,,, and

21,/ (1 —cos(k 4x))(7 —cos(k Ax))

b Ax
(2.5)
. 20/ (1—cos(l Ay))(T — cos(l 4y))
di = e

for the fourth-order central differences which, when used
twice, will produce the fourth-order central difference
approximation {16(w, ,+w,_ ) —(w, o+ w;_o)— 30w}/
12 Ax* for w,, . High order filters, such as the exponential
filter [ 10, 97,

- 2p § — 2
O'J,::t? alkfN Y , J;:e 2l Ny) \

{2.6)
where 2p is the order of the filter and « is chosen so that e ™*
is machine zero, can be used to enhance the stability while
keeping at least 2pth order of accuracy. This is especially
helpful when the projection P is used for the underresolved
coarse grid with ENO methods. We use the fourth-order
projection (2.5) and the filter (2.6) with 2p=8 in our
calculations. This will guarantee third-order accuracy
(fourth-order in L) of the ENO scheme. We will denote this
combination (the fourth-order projection plus the eight-
order filtering) by P,. To be precise, if (¥)=P,(*) and i,
and §,, are Fourier collocation coefficients of # and v, then
the Fourier collocation coefficients of & and ¥ are given by

dyd}a—dyo)

i=ala) ,

D+ (dy)? o
.o, —didya-diD) ‘
b=0,0 —————————,

LR ()

where ¢} and ¢} are defined by (2.6) with 2p=8, and d;
and 47 are defined by (2.5).
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Next we shall describe the ENO scheme for (2.1). Singe
{2.1} is equivalent to the non-conservative form (1.1), it is
natural to impiement upwinding by the signs of v and », and
to implement ENO equation by equation. The rth order
ENO approximation of, e.g, (&}, is thus summarized as
follows:

1. Take f(x)=u?(x, v) with y fixed. We start with the
point values f; = f(x;);

2. Define a function A(x) satisfying f(x)=(1/4x)
(32493 h(€) dZ, and its primitive H(x)=[*h(¢)dE. For
each j+41, a (r+ l)th-order polynomial Q,,,,(x) is
constructed interpolating f/{x) at points near x,, . It is
remarked in [ 12] that the Newton divided differences of
H{x) are constant multiples of those of f{x) of one order
lower. Since we do not need the zeroth-order difference, the
approximation Q; ., of H(x) can be accomplished using
the information of f; only, without explicitly constructing
Hix) or 1ts differences;

3. The stencil of the polynomial Q(x) is determined
adaptively by upwinding and smoothness of f{x). It starts
with either x; or x, ., according to whether u >0 or u <0,
then one point to the left or right is added to the stencil each
time by comparing the two relevant divided differences and
picking the smaller one in magnitude.

4. The derivative f'(x) is finally approximated by the
conservative difference (1/4x)(f; 2~ /f;—1p), Where the
numerical flux is computed by f, . | » = (d/dx) G(x)|

5. In the actual coding of the algorithm, undivided dif-
ferences should be used instead of the divided differences to
reduce round-off errors. There are also ways to make the
procedure more economical on a vector computer. The
details can be found in [13].

Y=

The approximation to (uv). is the same as above with
flx)=u{x, y)v(x, v}, and that for (wv), and for (¢?}, are
similar, with upwinding based on ».

There are two ways to handle the second derivative terms
for the Navier-Stokes equations. One can absorb them into
the convection part and treat them using ENO. For exam-
ple, f(x)=u?(x, y) can be replaced by f{x}=1w’(x, y)—
uu(x, y),, where u(x, y), itself can be obtained using either
ENO or central difference of a suitable order. The remaining
procedure for computmg f{x), would be the same as
described above. Another simpler possibility is just to use
standard central differences (of suitable order) to compute
the double derivative terms. Qur experience with com-
pressible fiow is that there 1s little difference between the two
approaches, especially when the viscosity u is small.

In the above we have described the discretization for the
spatial derivatives

i O S (6 ]

Y=y

Next we use a third-order TVD (total variation diminish-
ing} Runge-Kutta method [11] to discretize the resulting

ODE,
i
0)-r
obtaining

T O 7\ )
(o) =2l C) 4]
(3 /u\" b\
Z(Z) +Z<:j) +-ZmL§;)J (2.10)
u ntd "1 w7 2 " 123 2
=P, = = AL
(:) 50) #30) +5aer]

Note that we have used the property PseFP,=P, in
obtaining the discretization (2,10} from (2.9).

This explicit time discretization is expected to be
nonlinearly stable under the CFL condition

lay| lvg!) ( 1 1 )]
— 4+ —= 2u| —s+-——] <1 21
At[n}ix(dx + Ay +2u Ax2+£ly2 (2.11)

(see [11]). For small p (which is the case we are interested
1) this is not a serious restriction on Ar.

(2.9)

&

3. NUMERICAL RESULTS

We present two numerical examples in this section.

EXAMPLE 1. This example is used to check the third-
order accuracy of our ENO scheme for smooth solutions.
We first take the initial condition as

u{x, v, 0)= —cos{x) sin( y),

. (3.1)
v(x, y, Q) = sin(x) cos(y}
TABLEI
Accuracy of ENO Schemes for (3.1)
p=0 4= 0.05, central 1 =005 ENO

N L,error  Order L, error  Order L.error Order

32 9.10(—4) 528(—4) 487(—4)

64 5.73(=5) 399 320(-5) 404 3.09(—-5) 398
128 363(-6) 398 193(—6) 405 189(—6) 403
256 228(-7)y 399 1.18(—=7) 4.03 1L16(—-7) 403
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TABLE I
Accuracy of ENO Schemes for (3.3)

u=a #=0.03, central =005 ENO
N L, diff Order Error L, diff Order Error L, diff Order Error
32 L14(=1) 320(—2) 360(-2)
64 1.40(=2) 3.02 196(—3) 278(~3) 152 266(—4) 293(—3) 3.62 260(—4)
128 1.46(—3) 326 1.69(—4) 181(—4) 394 126(—5) 1.80( —4) 402 1.18(—5)
256 LI{—4) 377 8.78(—6) 1.09( —5) 406 691(—7) 1.10{ —5) 404 7.15(—7)

which was used in [5]. The exact solution for this case is
known:
u(x, v, t)= —cos(x) sin(y) e

32
v{x, y, t)=sin(x) cos( ) e 2. (3-2)

We take Ax=dAy=1/N with N=32, 64, 128, and 256.
The solution is computed up to =2 and the L, error and

numerical order of accuracy are listed in Table I. For the
u=0.05 case, we list results both with fourth-order centrai
approximation to the double derivative terms (central)
and with ENO to handle the double derivative terms by
absorbing them into the convection part (ENQO). We can
clearly observe fully third-order accuracy {actually better in
many cases because the spatial ENO is fourth order in the
L, sense) in this table.

60 |
1
Vorlicity PR voicy
# =
ENO 64x64 i o
W= ENO64;
”‘L\@ E x64
t=4 o t=8
pra—— | |
75 75
Vorticity Vorticity
ENC 64x64 ENO 64x64
t=6 t=10
. 3 1
75 75

FIG. 2. The vorticity contour for Example 2 at t =4, 6, 8, 10. ENO method with 642 points.
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FIG. 3. The vorticity contour for Example 2 at =4, 6, 8, 10. ENO method with 1282 points.
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FIG. 4. The time history of the kinetic energy for Example 2. Spectral FIG. 5. The cut at x=nr of v at +=_8. Spectral method with 5127
method with 512° points, ENO method with 647 and with 1282 points. points, ENO method with 647 and with 1282 points,
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We then take the initial condition as

u(x, y,0)= —sin?(x) sin(2 y), (33
o(x, y, 0) =sin{2x) sin*( ). )

A similar example with Dirichlet boundary condition was
used in [1]. We again take dx = 4y = I/N with N =16, 32,
64, 128, and 256 and compute the solution up to =2
However, this time the exact solution is unknown. As in
[1], we test the accuracy by computing the L, difference
between the solutions at the grid sizes 2 Ax and Ax, on the
coatser grid. If w ., =w+ Cdx"+O(dx"*"), then this
difference w, 4, — W, =(2"— 1) C Ax" + O(4x" ") would
predict the correct asymptotic order of accuracy r and the
error itself on the finer grid multiplied by 2" — 1. The result
is summarized in Table 11, where w= (i, v)" and L, diff =
(W3 4. — Wl ., In this table the estimated order and error

TABLE ITi

Resolution of the Total Circulation

t 2 4 6 8 10
ENO 647 0.837300 3.07100 7.16889 9.88063 1050122
ENO 1282 0.87452 297810 730999 1034414 11.79418

Spectral 5127 0.87433 298029 728308 1046212 1185875

are obtained using the remarks above. For u = 0.05, we have
again provided results both with fourth-order central
approximation to the double derivative terms (central)
and with ENO to handle the double derivative terms by
absorbing them into the convection part (ENO). The result
in Table II reconfirms better than third-order accuracy for
the third-order ENO scheme.

sof Discontinuous S0 / Discontinuous
=, @\ initial Data = Inital Data
= 7
50 o
. Vorticity @
1 . ] ENO128x128 Vorticity
40 \@ A 4 ENO 128x128
| =8
30k
201
10
00 ' - y
0.0 75 1.5
60 Discontinuous 6.0 Discontinuous
Initial Data Initial Data
50 50
Vorticity Vorticity
40 ENO 128x128 40 ENO 128x128
=5 O 1281
=10
30 aof
» &\
20 20 5 @
10 10 -
7
0.0 S 0.0 P T —h
s 75 0.0 5.0 7.5

FIG. 6. The vorticity contour for Example 2, discontinuous initial data, at t =4, 6, 8, 10. ENO method with 1282 points.
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ExamPLE 2. This is our test example to study resolution
of ENO schemes when the grid is coarse. It is a double shear
layer taken from [1],

_ [tanh{(y —=/2)/p), y<nm
ux 5, 0)= {tanh((3rr/2 —v¥p), ¥ > ,r}’

vix, y, 0)=é sin(x), (3.4}
where we take p=n/15 and 4 =0.05. The Euler equations
{(n=0) are used for this example. The solution quickly
develops into roll-ups with smaller and smaller scales, so on
any fixed grid the full resolution is lost eventuaily. For
example, the expensive run we performed using 5127 points
for the spectral collocation code (with an 18th order flter
(2.6)) is able to resolve the solution fully up to 1=8, as
verified by the spectrum of the solution (not shown here),
but it begins to lose resolution as indicated by the wripgles
in the vorticity contour at ¢ = 10 (the last contour in Fig. 1}.
On the other hand, the ENO runs with 64 and 1287 points
produces smooth, stable results (Figs. 2 and 3). In Fig. 4 we
show the time history of the kinetic energy (the spatial
average of 1(x* + v*)), which is an indication of the resolu-
tion of the method and grid. In Fig. 5 weshowacutatx=n
for v at t = 8. This gives a better feeling about the resolution
in physical space. Apparently with these coarse grids the full
structure of the roll-up is not resolved. However, when we
compute the total circulation

cgzj m(x,y)dxdy:j udx+uvdy (3.5)
02 aq

around the roll-up by taking @ = [n/2, 37/2] x [0, 2n] and
using the rectangular rule (which is infinite order accurate

for the periodic case} on the line integrals at the right-hand
side of (3.5), we can see that this number is resolved much
better than the roll-up itself (see Tabie III).

Finally, we use ENO scheme with 128? points for a
discontinuous initial data (p — 0 in (3.4)) as in [1]. The
stable results are shown in Fig. 6.

4. CONCLUDING REMARKS

High order ENO schemes can be applied to the incom-
pressible Euler and Navier-Stokes equations to obtain
stable, underresolved results on a coarse grid. Some global
quantities such as the circulation around the roll-up region
can be faithfully resolved.
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